

SSC8L60GT8

N-Channel Enhancement Mode MOSFET

> Features

V _{DS}	V _{GS}	R _{DS(ON)} Typ.	ID
60)/	±20V	3mΩ@10V	1204
60V		5mΩ@4.5V	120A

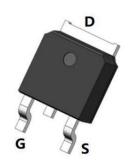
Description

This device is N-Channel enhancement MOSFET.

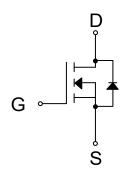
Uses SGT technology and design to provide excellent

RDSON with low gate charge. This device is suitable
for use in DC-DC conversion, power switch and
charging circuit.

100% UIS + ΔVDS + Rg Tested!


Applications

- Intelligent Lighting
- Load Switch
- Portable Devices
- DCDC Conversion


> Ordering Information

Device	Package	Shipping
SSC8L60GT8	TO-252-2L	2500/Reel

> Pin configuration

TO-252-2L(Top View)

Pin Configuration

Marking

(XXYY: Internal Traceability Code)

➤ Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

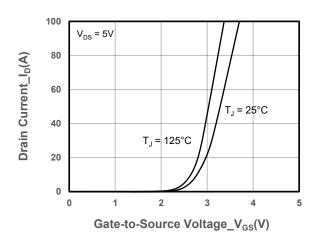
Symbol	Parameter	Ratings	Unit		
V _{DSS}	Drain-to-Source Volta	Drain-to-Source Voltage		V	
V_{GSS}	Gate-to-Source Volta	ge	±20	V	
1-	Continuous Drain Current d	Tc=25℃	120		
l _D	Continuous Drain Current	tage $T_{c}=25^{\circ}\mathbb{C}$ $T_{c}=100^{\circ}\mathbb{C}$ $T_{A}=25^{\circ}\mathbb{C}$ $T_{A}=70^{\circ}\mathbb{C}$ ent b $T_{c}=25^{\circ}\mathbb{C}$ $T_{c}=100^{\circ}\mathbb{C}$ $T_{A}=25^{\circ}\mathbb{C}$ $T_{A}=70^{\circ}\mathbb{C}$ H Single Pulse H Single Pulse Derature	60	Α	
I	Continuous Drain Current 3	T _A =25℃	35	^	
IDSM	I _{DSM} Continuous Drain Current ^a	T _A =70℃	25	Α	
I _{DM}	Pulsed Drain Curren	t ^b	480	Α	
D-	Dower Dissipation 6	Tc=25℃	69	١٨/	
P _D	Power Dissipation ^c	tage $T_{c}=25^{\circ}C$ $T_{c}=100^{\circ}C$ $T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$ ent b $T_{c}=100^{\circ}C$ $T_{c}=100^{\circ}C$ $T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	27	W	
D	Dower Discipation 3	T _A =25℃	5.9	١٨/	
P _{DSM}	Power Dissipation ^a	T _A =70℃	3.8	W	
las	Avalanche Current ^b L=0.5mH	Avalanche Current ^b L=0.5mH Single Pulse		Α	
Eas	Avalanche Energy ^b L=0.5mH Single Pulse		400	mJ	
TJ	Operation junction temperature		-55~150	· °C	
Tstg	Storage temperature ra	ange	-55~150		

➤ Thermal Resistance Ratings (T_A=25°C unless otherwise noted)

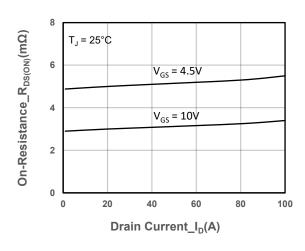
Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance ^a	21	°C /\\/
Rejc	Junction-to-Case Thermal Resistance	1.8	°C/W

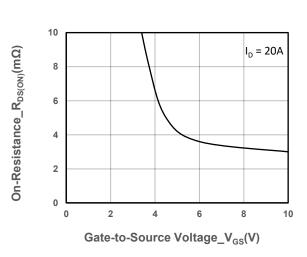
Note:

- a. The value of R_{θJA} is measured with the device mounted on 1 in² FR-4 board with 2oz.copper, in a still air environment with T_A=25 °C. The value in any given application depends on the user is specific board design. The power dissipation is based on the t≤10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.
- d. The maximum current rating is package limited.

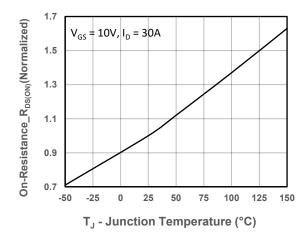

\succ Electrical Characteristics (T_A=25°C unless otherwise noted)

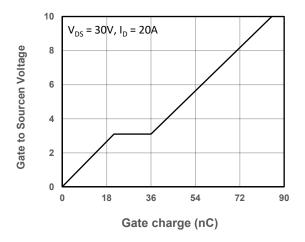
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D = 250µA	60			V
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1.0	2	2.5	V
Duain Caurea On Basistanas	Б	V _{GS} = 10V, I _D = 30A		3	4	mΩ
Drain-Source On-Resistance	$R_{DS(on)}$	V _{GS} = 4.5V, I _D = 20A		5	6.5	
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 60V, V _{GS} = 0V			1	μA
Gate-Source Leak Current	Igss	V _{GS} = ±20V, V _{DS} = 0V			±100	nA
Transconductance	GFS	V _{DS} = 5V, I _D = 20A		42		S
Forward Voltage	V _{SD}	V _{GS} = 0V, I _S = 20A		0.8	1.3	V
Gate Resistance	R _G	V _{DS} = 0V, f = 1MHz		1		Ω
Input Capacitance	Ciss	\\ -20\\\\ -0\\		5300		
Output Capacitance	Coss	$V_{DS} = 30V, V_{GS} = 0V,$		870		pF
Reverse Transfer Capacitance	C _{RSS}	f = 1MHz		61		
Total Gate Charge	Q _G	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		85		
Gate to Source Charge	Q _{GS}	VGS = 10V, VDS = 30V,		21		nC
Gate to Drain Charge	Q _{GD}	- I _D = 20A		15		
Turn-on Delay Time	T _{D(ON)}			21		
Rise Time	Tr	$V_{GS} = 10V, R_L = 2.5\Omega$		29		
Turn-off Delay Time	T _{D(OFF)}	$V_{DS} = 30V$, $R_G = 3\Omega$		59		ns
Fall Time	T _f			25		
Diode Recovery Time	Trr	I _F =20A, di/dt=500A/us		35		ns
Diode Recovery Charge	Qrr	I _F =20A, di/dt=500A/us		70		nC


> Typical Performance Characteristics (T_A=25℃ unless otherwise noted)



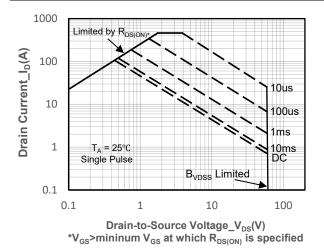
Output Characteristics





On-Resistance vs. Drain Current and Gate Voltage

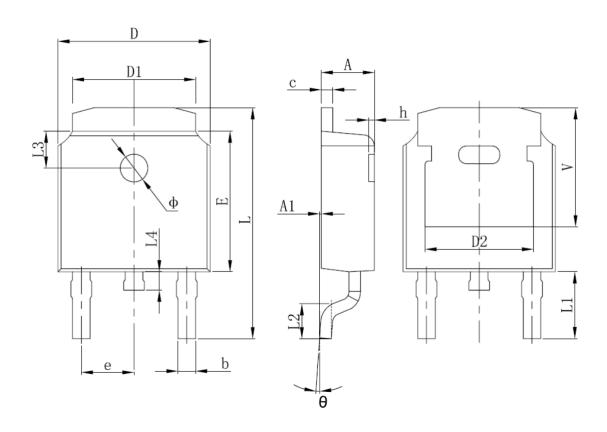
On-Resistance vs. Gate-to-Source Voltage



On-Resistance vs. Junction Temperature

Gate-Source Voltage vs. Gate charge

4/7



Safe Operating Area vs. Junction-to-Ambient

> Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.635	0.770	0.025	0.030	
С	0.460	0.580	0.018	0.023	
D	6.500	6.700	0.256	0.264	
D1	5.100	5.460	0.201	0.215	
D2	4.830 REF.		0.190 REF.		
E	6.000	6.200	0.236	0.244	
е	2.186	2.386	0.086	0.094	
L	9.712	10.312	0.382	0.406	
L1	2.900	REF.	0.114 REF.		
L2	1.400	1.700	0.055	0.067	
L3	1.600	REF.	0.063	REF.	
L4	0.600	1.000	0.024	0.039	
Φ	1.100	1.300	0.043	0.051	
θ	0°	8°	0°	8°	
h	0.000	0.300	0.000	0.012	
V	5.250	5.250 REF.		REF.	

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.